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a  b  s  t  r  a  c  t

This  article  introduces  a simulation  model  of rat  behavior  in  the  elevated  plus-maze,  designed  through  a
Decision  trees  approach  using  Classification  and  Regression  algorithms.  Starting  from  the  analysis  of  the
behavior  performed  by a  sample  of 18  Sprague-Dawley  male  rats,  probabilistic  rules  describing  behavioral
patterns  of the  animals  were  extracted,  and  were  used  as the  basis  of  the  model  computations.  The model
adequacy  was  tested  by  contrasting  a  simulated  sample  against  an  independent  sample  of  real animals.
Statistical  tests  showed  that  the simulated  sample  exhibits  similar  behaviors  to  those  displayed  by  the
real  animals,  both  in  terms  of  the  number  of  entries  to  open  and  close  arms  as well  as  in terms  of the  time
spent  by  the animals  in  those  arms. However,  the  performance  of the model  in  parameters  related  to  the
behavioral  patterns  was  partially  satisfactory.  Given  that  previous  attempts  in the literature  have neither
include this  kind  of  patterns  nor  the  time  as  a crucial  model  parameter,  the  present  model  offers a  suitable
alternative  for  the  computational  simulation  of  this  paradigm.  Compared  with  antecedent  models,  the
present  simulation  produced  similar  or better  results  in  all the considered  parameters.  Beyond  the goal  of
establish  an  appropriate  simulational  model,  extracted  rules  also  reveal  important  regularities  associated
to the  rat  behavior  previously  ignored  by other  models,  i.e. that  specific  rat  behaviors  in  the  elevated  plus-
maze  are  time  dependent.  These  and  other  important  considerations  to improve  the  model  performance
are  discussed.

© 2013 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

At the core of the behavioral neurosciences, the modeling of
processes related to variations in the animal behavior, highlights
the Elevated Plus-Maze as an important target for recent com-
putational research projects (Salum et al., 2000; Giddings, 2002;
Tejada et al., 2010). The Elevated Plus-Maze (EPM) is one of the
most used and well validated paradigms for the analysis of rodent
anxious behavior (Buccafusco, 2009; Lister, 1987; Pellow et al.,
1985) and given its structure, the EPM also offers the possibility to
develop simulational models of some behavioral parameters that
could improve the understanding of the behavioral response in rats
(Salum et al., 2000) and their underlying processes.

The standard EPM consists of two open arms, two closed arms
and a central area where the animal can choose to enter at any of
those four arms. The entire maze is elevated from the ground; and
the test procedure usually involves the analysis of the free mov-
ing animal during five minutes, starting with the animal in the
central area position. The frequency of entries and time spent on

∗ Corresponding author.
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every arm are usually registered. Commonly, high frequencies of
entries and longer time lapses spent in open arms are associated
with low anxiety states (Brenes-Sáenz et al., 2006); while other
behavioral measures like grooming and rearing are recorded for a
better characterization of the behavioral response (Holmes et al.,
2000).

So far, computational modeling approaches to rat behavior in
the EPM have shown partially satisfactory results (Miranda et al.,
2009; Salum et al., 2000). In a seminal reference, Salum et al.
(2000) based their proposal on the approach/avoidance theory of
Montgomery (1955), and introduced the use of a neural network in
which nodes corresponds to every possible position of the animal
in the maze. Following Montgomery’s statements, every node in
the network was  associated with a set of wij values which repre-
sents the tendency (w)  of change from a position i to a position j.
In this system, the node of the network that represents the actual
position of the animal in a given state gets a value of 1, while all the
other nodes maintain a value of 0. All the weights of the network
were computed by a few algorithms directed to estimate those ten-
dencies (Salum et al., 2000). Also, a random adjustment was added
to introduce the effect of variation in the exploratory motivation
exhibited by some animals. This later adjustment was not based
on data, but on assumptions introduced by the authors, as were
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the case with other parameters that were also re-adjusted for the
network to reach an acceptable performance.

Later, a second computational proposal tried to improve the
performance of this seminal model using an empirical based initia-
tive (Giddings, 2002) not derived from theory driven algorithms,
but from the analysis of the probabilities observed in the perfor-
mance of a group of real rats. Giddings (2002) analyze the evidenced
probabilities of seven different situations that frequently occur in
the maze such as: a rat moving toward the entry of an open arm,
toward the end of an open arm, toward the entry of a closed arm
or toward the end of a closed arm, among others. Then, the empir-
ically registered probabilities associated to those situations, direct
the changes in the movements of a virtual rat through a simula-
tion process (Giddings, 2002). Nevertheless, besides the important
claim in favor of a more empirically based approach, the segregation
of rat behavior in seven different situations was established based
on the author ad hoc judgment and not as result of any empiri-
cal data analysis. In addition, the effect of time was  not considered;
while some relevant model parameters were corrected using a trial
and error strategy until it reaches an acceptable result.

A third approach was proposed by Tejada et al. (2010) using
Markov chains. Conceiving the antecedent models as evidence
about the plausibility of modeling the rat behavior in the EPM as a
probabilistic problem of event transitions, Tejada et al. (2010) pro-
posed a Markov chain model. The states in this model correspond
to places in the maze, while transitions represent movements to
adjacent locations. Using this interesting approach, the authors ver-
ify that the proposed model reproduced the generic features of the
exploration transition patterns of real rats in an EPM. But the model
does not include the influence of time on the patterns of transition
among different locations nor the display of animal behavior (i.e.
grooming and rearing) as actual parameters.

The present article tries to take these former models a step
further, and describes a simulational model of the rat behavior
in the EPM based on a Classification and Regression Trees (CART)
approach (Hastie et al., 2009). Starting from a database with loca-
tional and behavioral records of real animals in the EPM, this
approach uses CART analyses to extract a set of rules that charac-
terizes the different conditional probabilities of animal movements
and behavioral transitions at different time intervals through the
test length. Then, those sets of rules are used to attribute the move-
ments and behaviors of a virtual sample through a simulational
architecture. Hence, the approach tries to improve the gaps in the
empirical foundations of antecedent models, and offers a new sim-
ulation model that for the first time: (a) introduce the time as
a relevant parameter to predict the pattern of the animal per-
formance in the maze, and (b) bring in the behaviors commonly
exhibited by the rats in this maze as other kind of potentially valu-
able parameters. For the validation process, the performance of a
simulated sample is contrasted against the performance of a new
sample of real animals, not used for the establishment of the model.

2. Methods

2.1. Subjects and housing conditions

Recorded videos of 40 Sprague-Dawley male rats (28 days old)
on the EPM were used for this study. The Animals were obtained
from LEBI Laboratories (University of Costa Rica) and were housed
in the colony room (room temperature at 22 ◦C ± 2.8 ◦C, 68–91%
of relative humidity, 10 air cycles per hour and 12:12 h light–dark
schedule) during 1 week before the behavioral measurement. At
the moment of the behavioral measurement, the animals showed a
mean weight of 64.08 g ± 3.07 g (mean ± S.E.M.). All the procedures

were approved by the Institutional Committee for Animal Care and
Use of the University of Costa Rica (Session 3-AE-450).

2.2. Behavioral testing

The EPM apparatus was  made of wood and consisted of four
arms of equal dimensions (50 cm × 10 cm)  connected by a central
area (10 cm × 10 cm)  and elevated at 50 cm from the floor. Two
arms enclosed by walls (40 cm high), were perpendicular to two
opposed open arms. To avoid falls, the open arms were surrounded
by a Formica rim (0.5 cm high). Testing room was dimly illumi-
nated with two 25 W red bulbs located 150 cm above the maze. At
the beginning of the test, each rat was placed in the central area
facing to a predefined closed arm. Each animal experienced the
EPM for 5 min. All testing sessions occur between 8 a.m. and 11 a.m.
and were digitalized as individual videos for posterior analysis. The
maze was  cleaned with 70% alcohol between rat sessions to reduce
odor cues.

2.3. Data codification

Following the procedure of Salum et al. (2000), the EPM area
was divided in 13 zones for a better characterization of the tran-
sitions among different locations. Behavioral and positional data
registered in each video were codified using two  different modal-
ities: (a) locational transitions of the animal through different
EPM areas were codified using an automatic video-tracking sys-
tem (Stoelting, Any-maze 4.63 using the location of the 88% of the
animal body as the criteria to determine the current area), while
(b) behavioral parameters like grooming times/frequencies, rear-
ing time/frequencies, and stretch-attempt postures (as described
in Brenes et al., 2009) were codified by trained human observers.
Inter-rater agreement was assessed using 30% of all the video
recorded data. Agreement reliability was >0.85 for each behavioral
category. Given the relevance of both the number of zones used
as surface area divisions in the simulation, and the percentage of
animal body used as the criteria for the current area determina-
tion, these parameters were explored as part of the preliminary
analysis (see Section 3). Also, following Giddings (2002) the maze
was divided in regions A and B, where A identifies the region that
includes the initially predefined closed arm that the animal is fac-
ing at the beginning of the test and the open arm to the right; while
B identified the two  other arms. This was  implemented to empir-
ically identify possible bias in arm selection favoring the initially
predefined closed arm.

Both kinds of data (behavioral and locational) were coded for
every second that the animal spent in the maze, and were included
as relevant information for the analysis of the behavior of each rat.
Later, half of the animal’s videos randomly selected were used to
implement the simulation model, and the remaining half were used
for the validation procedure.

2.4. The simulation model

The implementation of the simulation model begins with the
analyses of a database that includes the behavior and position of
18 rats (2 animals were removed after being identified as out-
liers, using the criteria of Mahalanobis distances higher than �2

(17) = 33.40) at every second in the EPM (300 s for each animal).
Using this data, computations were made to establish other rele-
vant variables like: animal movement (set to 1 if the animal moved
to an adjacent area from one second to the next, or 0 otherwise),
current zone location (set to 0, 1 or 2, if the animal location belongs
to the central area, closed or open arms, respectively), distance from
center (set to 0 when the animal was  located in the central area, or
to 1, 2 or 3, if the animal was  located at the entrance, middle or
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end of any arm respectively) and region selection (set to 1 if the ani-
mal  enter the region that includes the initially predefined closed
faced arm, or 0 otherwise). Subsequently, the complete database
was analyzed using a CART approach (Hastie et al., 2009) performed
with the SPSS 17.0 Decision Tree Module, and the Classification and
Regression Tree algorithm as the growing method. From these anal-
yses, four different CARTs were obtained. The simulational model
combines the use of those different CARTs (see Section 3) to cal-
culate every new state. The first tree determines the occurrence
probability of animal movement to a different area (dependent
variable), based on the conditional probabilities associated to: time
lapse, current arm location, current behavior and distance from
center (as independent variables). The second tree determines the
probability associated to the possible direction of the movement
(toward or away the center). While the third tree determines the
occurrence probability of different behaviors (i.e. grooming, rearing
or stretch-attempt postures); in both cases the same set of indepen-
dent variables used in the first tree were included again. Finally,
the fourth tree determines the probability of entrance to an open
or close arm for those cases in which animal were located in cen-
tral position. Here, the independent variables were the time lapse,
the current behavior and the number of previous entrances of the
animal in the open arms. All decision trees with the exception of
the fourth, shared the following parameters: minimum number of
cases for parent and child node was 100 and 50 respectively, while
the maximum tree depth was set to 5. Given that the fourth tree
only includes those cases where the animal was in central position,
the minimum number of cases was set to 40 and 12 for the parent
and the child nodes respectively. The impurity measure used was
the Gini’s Index with a minimum change in improvement of 0.0001.
A 10 fold cross-validation was applied.

2.5. Decision trees with CART method for behavioral analysis

As mentioned, the simulation model was implemented using
four different decision trees that used the Classification and Regres-
sion Tree (CART) algorithm as the growing method (Hastie et al.,
2009). In the CART algorithm, there can be a y that refers to a

nominal variable that assumes values in {a1, a2, a3,. . .,  am}, and
X to a vector (x1, x2, . . .,  xp) where each xi represents an indepen-
dent nominal or metric variable. Hence, the algorithm allows the
possibility to consider classification problems in terms of finding
partitions of the p-dimensional space conformed by the xi’s in n non
overlapped multidimensional regions; where those regions were
as homogenous as possible in relation to the dependent variable
y. Thus, the CART algorithm recursively divides the p-dimensional
space selecting a first variable xj from the vector X and cutting
the range of values of the variable in a point xj0, producing two
intervals: xj < xj0 and xj > xj0. The improvements in the predicted
probabilities associated with these intervals are temporary stored
in memory, while a new variable xk from the vector X is selected,
split in a point xk0, and compared to those previously store in term
of their associated improvements. For any variable, the process con-
tinues until the new intervals improvement values do not exceed
a given threshold. Those variables and intervals associated with
major improvements in the prediction probabilities are selected as
relevant nodes for each CART.

The application of CART algorithms to the biological problem of
animal behavioral prediction, allows the consideration of the EPM
dynamics in terms like the following: let’s consider a case with only
3 relevant variables for the prediction of a rat’s next movement in
the EPM,

y ∈ {stay, move}

x1 ∈ {open, close}

x2 ∈ {1, 2, ..., 300}

where y represents the dependent variable (the rat will move to
another position or will stay at least one more second in the same
position); x1 the current arm (open or close) and x2 the time (in s).

The CART analysis for a theoretical sample of 20 animals is
shown as an example in Fig. 1. The Node 0 represents the starting
point, where half of the units of analysis shows movement (set as
1) and the other do not (set as 0). Thus, the probability associated to

X  (Arm) = Open1 X  (Arm) = Closed1

X  (Time) < 8 seg.2 X  (Time) > 8 seg. 2

1,1,0,0,0,0,0,0,01,1,1,1,1,1,1,1,0,0,0

A.c.p.=0.33    Gx=0.44

A.c.p.=0.73    Gx=0.40

A.c.p.= 0       Gx= 0

Node 0 - Movement (X )3

Node 1 - Movement (X )3 Node 2 - Movement (X )3

Node 3 - Movement (X )3 Node 4 - Movement (X ) 3

A.c.p.= 0.22    Gx= 0.35

Fig. 1. Extended example of a Decision Tree Structure for the prediction of Animal Movement using two independent variables (n = 20). In the example, the initial value of Gini’s
index  for the 20 cases was: 1 − (0.502 + 0.502) = 0.50. The partition that minimizes Gini’s Index is in the variable x1 In the Nodes 1 and 2 the index was 0.40 and 0.35 respectively.
Thus,  the gain of including this partition would be: 0.50 − (0.55 × 0.40 + 0.45 × 0.35) = 0.50 − 0.38 = 0.12 (the gain is defined as the difference between the initial model and the
model  with the new partition, taking into account the sum of the final nodes’ Gini’s index weighted by the number of elements in each node). The recursive application of this
procedure promotes the division of the right branch according to the time in seconds. That new partition showed a Gini’s index of 0 (Node 3) and 0.44 (Node 4) and represents
a  gain of: 0.38 − (0.55·0.40 + 0.15 0 + 0.30 0.44) = 0.38 − 0.35 = 0.03. At this moment the process stops because of the previously established restrictions (Node 3 has 3 items
and  Node 4, 6 items). Similarly, the tree will not grow in the right branch because the minimum gain .01 has been obtained. The 3 final nodes could be expressed as rules
in  the following terms: (2.3) IF(x1 = open) THEN move, p = 0.73; (2.4) IF(x1 = close) AND (x2≥8) THEN move, p = 0.33; (2.5) IF(x1 = close) AND (x2 < 8) THEN move, p = 0.00.
According to this, the Rule (2.3) means that when the animal is in the open arm it will move with a probability expressed by the value p = 0.73. Similarly, Rule (2.4) expresses
that  if the animal is in the closed arm and the time is equal or superior to 8 seconds, it will move with a probability of 0.44. Finally, Rule (2.5) means that an animal in the
closed arm before 8 seconds must stay in the same position until the next second. Notes: A.c.p: associated conditional probability (of movement), Gx: Gini’s Index.
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the prediction of movement from Node 0 is 0.50. Later, the Node 1
groups those cases from Node 0 where the animals were in the open
arms and, adding this consideration, the associated probability of
movement for this Node is 0.73. Then, following the same proce-
dure, other nodes like Node 3 or Node 4 also evidence different
associated probabilities (0 and 0.33 respectively) by considering
those cases where the animals were in the closed arms and the
time was under or above 8 s. Importantly, the exemplar CART in
Fig. 1 contemplates the following consideration: every parent node
should have 9 or more elements; every final node should have at
least 3 elements and, the minimum gain tolerated (defined as the
difference in the given information index between a parent node
and the weighted average of its sons) for any node was  0.01 (for a
detailed description see Fig. 1).

The CART procedure also include an information index criteria
for the quantification of the convenience associated to the estab-
lishment of a new partition (or branch), in order to produce a new
homogeneous region in y. Particularly, Gini’s index (see Eq. (2.1)) is
the preferred criteria in CART because of its mathematical proper-
ties (Hastie et al., 2009). Where pk corresponds to the proportion of
the N elements in a given region with k representing the m possible
categories assumed by yi (see Eq. (2.2)); where I (yi) = 1 if yi is equal
to k and I (yi) = 0 if yi is not equal to k.

G = 1 −
m∑

k=1

(pk)2 (2.1)

pk =
(

1
N

) N∑
i=1

I(yi = k) (2.2)

2.6. Validation method

The performance of the simulation model was tested via com-
parison with the behavioral parameters of a different subsample
of real animals (n = 19 after the removal of one outlier using the
criteria of Mahalanobis distances higher than �2 (17) = 33.40),
not included in the establishment of the model. The behavioral
performance of this second subsample of real animals was con-
trasted to an artificial subsample of equal n size, generated through
the simulation model. The overall performance of both subsam-
ples in relevant EPM locational and behavioral parameters was
analyzed using a Multivariate Analysis of Variance (MANOVA)
with p < 0.05, the standard statistical procedures reported in the
literature.

3. Results

3.1. Preliminary analysis

As mentioned previously, given their relevance for the simu-
lational model, both the percentage of animal body used as the
criteria for the current area determination, as well as the num-
ber of zones used as surface area divisions in the simulation were
analyzed.

The first analysis contrasted the differences associated to the
use of 88% of animal body as criteria for current area determi-
nation (as used in the automatic video-tracking) against the use
of the ‘four pawns into the area’ criteria (a common parame-
ter generally used by trained human observers). The same set of
18 videos of animals in the plus-maze was registered by video-
tracking and human observers using the above-mentioned criteria
respectively. A paired sample analysis of the resulting times spent
in open and closed arms according to those different criteria
were contrasted. The results did not shown statistically significant

differences between both criteria in the time spent in open arms,
t (17) = −0.54, p = 0.60; nor in the times spent in closed arms, t
(17) = −0.69, p = 0.50.

Also, a posterior analysis was performed using a different num-
ber of area divisions to analyze possible differences resulting
from the adoption of this parameter. Thus, the results obtained
using the 13 zone division was contrasted (zone by zone) against
the results obtained by the implementation of a 25 zone divi-
sion (the central area was  maintained as unitary, but each of
the remaining 12 zones were disaggregated as 2 subdivisions
(i.e. 1-NE/1-AE, 2-NE/2-AE, etc.; NE and AE for subdivision Near
the arm Entrances or Away from the Entrance)). Thus, signifi-
cantly different times spent between two  subdivisions derived
from the same area were considered as evidenced favoring a
gain of information by subdivision. Nevertheless, a repeated mea-
sure MANOVA using the times spent in every subdivision as
dependent variable and three intra-subject variables (subdivision,
arm, distance from center and region) does not showed a sig-
nificant principal effect associated to the subdivisions (Wilks’s
lambda = 0.98, F(1,17) = 0.30, p = 0.58, partial �2 = 0.02). Interest-
ingly, the analysis of the MANOVA interactions exhibited significant
results (subdivision × region × distance from center × arm: Wilks’s
lambda = 0.24, F(2,16) = 13.59, p = 0.02, partial �2 = 0.44). When
reviewed in detail, these interactions point toward differences
between 4 (in 12) pairs of maze subdivisions. Nevertheless a pos-
terior visual inspection of videos showed that these differences
were not produced by the locational transitions of the animal,
but were derived from the vertical/horizontal changes in the axis
of the animal associated to rearing and stretch attempt pos-
ture behaviors. Hence, the 13 areas division was conserved as
an adequate representation of the maze surface in the follow-
ing.

The region selection parameter also was  explored empirically.
After the analysis of the probability associated to the selection of
the A region (that includes the initially predefined faced arm) for
those cases where the animal is located at the central area, this
value was set to 0.669 for the simulation.

3.2. CART trees

Fig. 2 shows the structure of the first and deepest tree derived
from the analysis of the real subsample. This tree was generated for
the prediction of animal movement using time lapse, distance from
center, current behavior and current location at the beginning of
each second as independent variables. The tree evidenced a total
of 85% correct predictions (risk = 0.54, SE = 0.018) for those cases
where the rats actually move, with a slightly minor percentage of
correct predictions for the total of cases (80%).

As can be seen, distance from center demonstrated the most
important contributions followed by time lapse; whilst current
behavior and location showed lower relevance (See Fig. 2).

Similarly, Fig. 3 shows the structure of the decision tree for the
prediction of animal direction of movement for those cases where
the rat is not located at the central position (otherwise the direction
is fixed away from center), using the same independent variables
introduced in the previous tree. The main result of this tree shows
that the condition of being in the outer or middle part of an open
arm is associated with a higher probability of movement toward
the central area, when compared to the same probability when the
animal is in the outer or middle part of a closed arm. The percentage
of correct predictions was 71% (risk = 0.29, SE = 0.02).

Fig. 4 exhibits the structure of the decision tree for the pre-
diction of animal behavior using the same independent variables
introduced in the previous tree. Here the main effect detected
was for the current behavior, plus some minor contributions
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Fig. 2. Decision Tree Structure for the prediction of animal movement using time lapse, distance from center, current behavior and current location at the beginning of each
second  as independent variables (n = 18). Notes: Node 0 shows the general unconditional probability of animal movement for the entire sample through the total length of
time.  Subsequent Nodes shows the conditional probabilities for specific cases were: T = time in seconds, Bhv = Current Behavior (0 = none, 1 = rearing, 2 = stretched attend
posture,  3 = grooming, 4 = head-deeping), DFC = Distance from Center (0 = at the central area, 1 = at the entrance of the arm, 2 = at the middle of the arm, 3 = at the end of the
arm),  Arm (1 = closed, 2 = open).

associated to time lapse. The percentage of correct predictions was
94% (risk = 0.06, SE = 0.003).

Finally, Fig. 5 shows the decision tree for the prediction
of the rat’s arm choice (open or close) from central position.
The main effect was for the time lapse, followed by the num-
ber of previous entrances in open arm. The current behavior
was excluded by the model. The rate of correct predictions
was 93% (risk = 0.17, SE = 0.03) for those cases in which the ani-
mal  moved to the close arm, and 70% when it moved to the
open arm.

The probabilities associated with the leaves of these trees,
were computed and implemented in Python 2.6 code as a set
of production rules (similar to those presented in Fig. 1) for
the implementation of the simulation program (see Appendix
1). Additionally, a single restriction was imposed to the
program. In specific, head-deeping in the middle of closed
arms behavior (actually implausible in real conditions) was
restricted.

Toward   59.5   379
Away       40.5   258

DFC: 1;2

Arm: 2 Arm: 1

DFC: 3

Node 0 - Direction

Toward   49.5   253
Away       50.5   258

Node 1 - Direction

Toward   57.5     77
Away       42.5     57

Node 3 - Direction

Toward   46.7   176
Away       53.3   201

Node 4 - Direction

Toward   100    126
Away         0.0      0

Node 2 - Direction

Fig. 3. Decision Tree Structure for the prediction of animal direction using time
lapse, current arm location, previous behavior and distance from center as indepen-
dent variables (n = 18). Notes: DFC = Distance from Center (1 = at the entrance of the
arm, 2 = at the middle of the arm, 3 = at the end of the arm), Arm (1 = closed, 2 = open).

3.3. Validation results

Using the simulation architecture based on the rules extracted
from the CARTs a simulated sample of 19 rats was produced.
This sample was  contrasted with an independent sample of 19
real rats that were not used as part of the implementation of
the program. Then a series of MANOVAS tests were conducted
between the real and the simulated sample, using times and fre-
quency of visits to arms and behaviors exhibited as dependent
variables. As expected, the first MANOVA using entries frequency
in open arms, closed arms and central area as dependent vari-
ables between both samples did not showed statistically significant
differences (p < 0.05), Wilks’ lambda 0.88, p = 0.11, �2 = 0.12 (see
Fig. 6a). Similarly, there were not statistically significant differ-
ences in another MANOVA using the time spent in the same areas
as dependent variables (see Fig. 6b), Wilks’ lambda 0.99, p = 0.89,
�2 = 0.01. Nevertheless, a third MANOVA exhibited partially satis-
factory results. The overall effect of the sample on the time spent
in different behavior was significant (see Fig. 6c), Wilks’ lambda
0.75, p = 0.02, �2 = 0.25, as well as the effects on stretch-attempt
postures, F(1, 36) = 9.39, p < 0.01, �2 = 0.21. In contrast, the specific
effects on grooming, F(1, 36) = 1.23, p = 0.27, �2 = 0.03 and rearing,
F(1, 36) = 0.26, p = 0.62, �2 = 0.01, were not significant. The over-
all effect of the sample on the frequencies of different behaviors
was significant on the last MANOVA (see Fig. 6d), Wilks’ lambda
0.47, p < 0.01, �2 = 0.53. Unexpectedly, there were significant dif-
ferences on grooming, F(1, 36) = 16.45, p < .01, �2 = 0.21; rearing,
F(1, 36) = 19.99, p < 0.01, �2 = 0.36, and stretch-attempt posture, F(1,
36) = 10.26, p < 0.01,�2 = 0.22.

4. Discussion

The results suggest that the Classification and Regression Trees
approach for the simulation of the Elevated Plus Maze, offers
a suitable alternative for the computational modeling of this
classic paradigm in behavioral neuroscience. The simulational
model was  able to produce similar results to those revealed by
the real sample in central variables for the cognitive-behavioral
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Fig. 4. Decision Tree Structure for the prediction of animal behavior using time lapse, current arm location, previous behavior and distance from center as independent
variables (n = 18). Notes: T = time in seconds, Bhv = Current Behavior (0 = none, 1 = rearing, 2 = stretched attend posture, 3 = grooming, 4 = head-deeping), Arm (1 = closed,
2  = open). n = number of cases, % = percent of total probability.

Fig. 5. Decision Tree Structure for the prediction of Entry to Arm using lapse, current arm location, and number of previous entries in Open Arm (n = 18). Notes: T = time in
seconds, EnOp = Previous Entries in Open Arm. n = number of cases, % = percent of total probability.
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Fig. 6. MANOVA results for the analysis of statistical differences between the real and simulate (n = 19 for each group) using frequencies of entries and times spent on different
areas  of the maze, as well as frequencies and time spent at different behaviors as dependent variables.

characterization of the behavioral profiles commonly displayed on
this maze (Brenes et al., 2009; Holmes et al., 2000). Essential param-
eters like time spent in open and closed arms, demonstrated similar
values between the real and virtual sample after the validation pro-
cess. Furthermore, the model also showed satisfactory results in
terms of the generated number of entries to open and closed arms,
another subset of relevant parameters (Hogg, 1996).

The CART approach also allows the identification of time as a sig-
nificant parameter for the prediction of the animal performance,
not previously considered by other models (Salum et al., 2000,
2003; Tejada et al., 2010). Actually, several specific conditions asso-
ciated to different nodes in most CARTs were time dependent, a
result that remarks the need to take into account the eventual con-
tribution of this parameter for an improvement in the accuracy
of the simulational models. In general, the extraction of these and
other kinds of parameter regularities from the raw data and through
the CART method, facilitate a reduction in the establishment of ad
hoc parameters at the basis of the formal models.

Nevertheless, even when the architecture also achieved the
expected results in terms of the generation of behavioral param-
eters like time spent in grooming and rearing, this was not the
case for the time spent in stretch-attempt posture nor for the total
event frequencies of these variables, where the model showed
statistically significant differences against the real sample. These
unexpected results can be explained given different tenets. It may

be the case that these behavioral parameters demand a different
strategy of analysis, since it was  evident that some behaviors (i.e.
grooming) appeared in clusters of consecutive seconds at different
time intervals for different animals, impeding their accurate char-
acterization through a CART procedure (Keedwell and Narayanan,
2005; Timofeev, 2004). In this case, future proposals should con-
sider mixed strategies of analysis, where different algorithms can
be applied to the prediction of different parameters. Here, an
eventual introduction of a Cox regression model for the specific
prediction of behavioral frequencies, may  improve the proportion
of the model’s correct predictions, by an analysis of their specific
time lengths (Kattan, 2006).

Besides, another consideration points to the number of cases
included in the model establishment. Because of the low frequency
exhibited by certain behaviors, it may  be expected that a bigger
sample size can lead to a more accurate representation of the con-
ditional probabilities derived from the CART’s. In this sense and
following the results, an increment in the accuracy associated with
the probabilities of grooming and stretch-attempt postures initia-
tion, could improve the model performance against the real sample.
Another important consideration remarks the acquisition of the
behavioral measures, which in contrast to the positional measures
were not automatized but registered by trained observers (see
Section 2.3). Even when reliability between observers reach sat-
isfactory coefficients (Watkins and Pacheco, 2001), this points at
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the necessity to consider new initiatives to contrast different sets
of automatized parameters and their possible effects on the simu-
lation results. Despite the fact that the present article also analyzed
possible significant effects associated with parameters like the
percentage of animal body used as criteria for current area determi-
nation and the number of zone division, this should be extensively
explored in the future. Here, neither of those parameters evidenced
a significant contribution when compared to a trained observer
criteria (‘four pawns into the area’) or to a major number of division
(25 zones), respectively. Nevertheless, these are just a few relevant
values among plenty others that may  be assessed in searching for
model optimizations.

Interestingly, the CARTs also offer an innovative way  to visual-
ize and examine the behavior of the real animals in the EPM. The
results highlight a subset of time intervals and conditions that may
demand more attention from researchers to specify the nature of
the anxiety-like performance of the animals in this paradigm. As
shown in Nodes 11 and 12 from Fig. 2, as well as in Nodes 3 and 4
from Fig. 5; the very first seconds on the EPM are crucial. From their
initial position at the central area, the probability for an animal to
move to another location change from 0.57 (if the transition is made
during the first 6.5 s, Node 11 in Fig. 2) to 0.19 (if this transition is
made posterior to that time interval. Node 12 in Fig. 2). Among
those transitions executed before 6.5 s, there is another important
consideration for the cases where the transition is made during the
first 2.5 s. In this latter case (Node 3 in Fig. 5) the probability to
move toward a closed arm is 0.93 in contrast with a probability of
0.34, for those transitions executed from the central area after 2.5 s
(Node 4 in Fig. 5).

This kind of evidence can help to better characterize an initial
avoidance response, or reactivity, as a main factor in the modula-
tion of the anxiety-like behavior of the animal through their maze
experience. A factor putatively elicited by the novel and aversive
character of the maze structure, or derived from the drive to escape
from the initial human handling. Simulational models where these
initial parameters were altered produce remarkable changes in
the percentages of time spent in open and closed arms (data not
shown), claiming the need for a more detailed analysis of these
initial performances.

In addition, the fact that distance from center emerges as a
relevant dimension for the prediction of movement, denotes the
particular character of the middle of the arms as passage zones with
high probability of movement associated. Most important, this also
contributes to quantify the differences between the middle of open
and closed arms (Nodes 7 and 8, in Fig. 2). Based on expert criteria
and intuition, recent literature has started to take into account the
quantification of the explorations beyond the middle of the open
arm as an alternative indicator to better characterize the anxious
response of the animal in the EPM (Rico et al., 2009). Here, the dif-
ference in the movement probability associated to both arms, offers
support to the use of this kind of indicator and claims for the explo-
ration of the temporal variations related to that parameter, given
that certain specific probabilities associated to it were only present
during the initial 76 s.

Finally, another informative feature revealed by the CARTs is
exposed through Nodes 2, 5 and 6 from Fig. 4. There, conditional
probabilities of maintaining a grooming, head-deeping or rearing
behavior from one second to the next are shown. Interestingly,
the eventual consideration and inclusion of these values and their
changes through time as parameters or dynamical attractors, could
improve the performance of future models, opening new modeling
perspectives based on dynamic systems theories (Montebelli et al.,
2008; Poucet and Save, 2005).

Other alternatives to improve the model general performance
should be also contemplated. Some relevant options have been
applied as part of previous models with good results. For example,

the introduction of locational and behavioral data from 3 or 5
antecedent seconds in the prediction of the next step could be
an alternative to optimize the prediction of both locational and
behavioral variables. This alternative could also improve the analy-
sis of other kind of parameters like the inertia in animal transition,
used with satisfactory results by antecedent research (Giddings,
2002; Tejada et al., 2009). Markov networks, as well, allow the
introduction of specific occurrence probabilities associated to spe-
cific sequence chains. Therefore, the implementation of a Markov
transition matrix to support the prediction accuracy of the architec-
ture may  be another good alternative that has been probed before
(Tejada et al., 2010). Still, these and other possible alternatives
should be carefully assessed, examining the given improvement
in the prediction accuracy against the computational demands
and complexity introduced in exchange (Keedwell and Narayanan,
2005). In another direction, the application of different methods of
CART pruning should also be tested, given that none of them were
used here in an effort to prevent the unnecessary introduction of
as much ad hoc parameters as possible.

Another alternative worth to mention is the neural network
approach. A neural network could allow the simultaneous intro-
duction of some of the previous considerations, and has been used
in two earlier reports with partial satisfactory results (Salum et al.,
2003; Miranda et al., 2009). Although neither of them included
behavioral parameters, a neural network may  consider both loca-
tional and behavioral data, as well as specific nodes for n previous
states of positions and behaviors in order to categorize a given next
step.

In conclusion, the present article offers a CART based architec-
ture that simulates the behavior of rats in an Elevated Plus-Maze.
The simulational model was  able to generate and achieve good
results in the production of relevant parameters like time spent
in open and closed arms, as well as in terms of the number of
entries to those areas. Plus, the model generates partially satis-
factory results in terms of the prediction of different behaviors
performed through the test length. Given that these parameters
constitute the basis of the assessment commonly used in the behav-
ioral neurosciences, the present results in addition to some of
the antecedent research commented here, offers a good perspec-
tive toward the future applications and contributions of these
approaches. Among these eventual applications, the present arti-
cle showed that these models can facilitate new ways to visualize
and analyze the animal behavior in detail, offering the possibility
to identify alternative and informative indicators and/or endophe-
notypes that should be considered and contrasted both by in vivo
and in silico procedures. Finally, as it has been proposed elsewhere
(Knight, 2011; Scalesse and Issenberg, 2005; Thomas, 2009), the
optimization of these models can be particularly important for
the explorations of alternatives to reduce the number of animals
used in experimental testing and teaching. However, in paral-
lel to those efforts, improvements and systematic changes are
needed for these models to really achieve a totally satisfactory
performance. Some of those improvements have been commented
here, but others should take advantage from the emerging new
approaches deriving from the interdisciplinary convergence of
neuroscience, behavioral science, computer science and bioinfor-
matics.

Appendix A. Supplementary data

Supplementary data associated with this article can be
found, in the online version, at http://dx.doi.org/10.1016/
j.biosystems.2013.07.002.
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